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In Part I the properties of potential-time curves for electrode processes in which electron transfer is followed by a chemical 
transformation are established from the rigorous solution of the corresponding boundary value problem. In Part II the 
transition time for catalytic processes in which the catalytic process is a first-order chemical process is derived, and the 
validity of this theoretical analysis is verified for the catalytic reduction of Ti(IV) in presence of hydroxylamine. In Part 
I I I properties of potential-time curves for the anodic oxidation of a metal with formation of a complex ion are established 
and verified experimentally for the anodic oxidation of silver in potassium cyanide. In Part IV potential-time curves for 
the anodic oxidation of a metal with the formation of a precipitate are discussed and studied experimentally in the case of the 
oxidation of silver in halide solutions. Transition times for spherical diffusion and for linear diffusion with partial mass 
transfer by migration in an electric field of constant intensity are derived in the Appendix by Gleb Mamantov and one of the 
authors (P.D.) . 

Theoretical treatments of various electrode proc­
esses in voltammetry at constant current were pre­
viously reported.1'2 The theory of other processes 
in which the electron transfer is followed by chemi­
cal reaction is reported here. The processes repre­
sented by the following symbolic equations will 
be considered 

k, 
O + no =» T! 7 > 7, (1) 

O + we = R 

T , ( 2) 

R + 7.-^*~ O 

M + pX~ = MXp(^-")- + ne (3) 
M + pX~ = MXp + pe (4) 

where O is a reducible substance and R its product 
of reduction; Z is a substance which is not reduced 
or oxidized at the potentials at which the reduction 
of O occurs; M is a metal, and X - is either a com­
plex forming substance or an ion which forms the 
insoluble substance MXP. Properties of the poten­
tial-time curves corresponding to these processes 
will be derived for the case in which mass transfer 
is solely controlled by linear diffusion; migration 
of the electrolyzed species is made negligible by the 
addition of a large excess of supporting electrolyte, 
and convection is minimized by the use of a hori­
zontal working electrode and by limiting the dura­
tion of electrolysis to 1-2 minutes. 

Electrode processes without any kinetic compli­
cation and with mass transfer controlled either by 
spherical diffusion or by linear diffusion and migra­
tion are treated in the appendix. 

Part I. Kinetic Processes Represented by 
Equation 1 

The Boundary Value Problem.—The variations 
of the concentration of substance O during elec­
trolysis are not affected by the kinetics of the 
chemical reaction R <=± Z, and consequently the 
value of the concentration Co(O, /) at the electrode 

(1) (a) P. Delahay and T. Berzins, T H I S JOURNAL, 75, 2486 (1953); 
(b) T. Berzins and P. Delahay, ibid., 75, 4205 (1953); (c) P. Delahay 
and C. C. Mattax, ibid., 76, 874(1954); (d) P. Delahay, Disc. Faraday 
Soc, in press (1954). 

(2) For a general discussion and bibliography, see P. Delahay "New 
Instrumental Methods in Electrochemistry," Interscience Publ. Co., 
New York, N. Y., 1954, Chapter VIII. 

surface, as derived by Sand,3 is still valid. Thus 

Com _ Co _ - g ^ (5) 

where t is the time elapsed since the beginning of 
electrolysis, C0 the bulk concentration of reducible 
substance, i0 the current density, F the faraday, and 
Do the diffusion coefficient of substance O. The 
notation Co(O, t) indicates that the concentration 
of substance O is taken at x = 0, * being the dis­
tance from the electrode. The transition time r, 
which is defined by the condition Co(O, t) = 0, or 
by the relationship 

r/' = 2h (6) 

does not depend on the kinetics of a reaction in 
which R might be involved. 

The equation of the potential-time curve is de­
rived by introducing Co(O, t) and CR(O, t) in the 
equation for the electrode potential. If the elec­
tron transfer is totally irreversible, the potential of 
the working electrode is independent of CR(O, t), 
and the potential-time curve is not affected by the 
transformation R +3. Z. If the process is reversible, 
the potential is given by the Nernst equation, 
where both Co(O, t) and CR(O, I) appear; in that 
case the potential depends on the kinetics of the 
reaction R <=± Z. The concentration CR(O, t) can 
be derived as follows. If the transformation R <=£ 
Z is of the first order, substances R and Z obey the 
following modified forms of Fick's equation 
dCR(x,t)/bt = DRd*C(x,t)/Sx2 - ktCR(x,t) + 

kb Cz(x,l) (T) 

bCz(x,t)/bt = DZb2C(X1DZbX' + ktCR(x,t) -
kbCz(x.t) (8) 

where the k's are formal rate constants. The first 
boundary condition is obtained by noting that sub­
stance R is produced at the electrode surface at 
constant flux. Thus 

DR [bCa(x,t) /Sx]1-O = -H/nF (9) 

The second boundary condition expresses that 
Z is not reduced or oxidized at the electrode; hence 
the flux of this substance is equal to zero at x = 0, 
i.e. 

DzIbCz(X1DZbX]x.,, = 0 (10) 
As initial condition one can prescribe Cs.(x, 0) = 

(3) H. J. S. Sand, Phil. Mag., 1, 45 (1901). 



5320 P. DELAHAY, C. C. MATTAX AND T. BERZINS Vol. 76 

Cz(x, 0) = 0. Finally, one has CR(X, t) -»• 0 and 
Cz(x, t) -*• 0 for x -*• co. 

The solution of this boundary value problem is 
obtained by the Laplace transformation, and the 
concentration CR(O, t) is 

- ^ + 
erf P , + k0)V>tl/>]l 

(kt + kZy/-- \ 
(11) 

where K is the equilibrium constant for R <=± Z 
(K = kf/kt,), and D is the common value of DR and 
Dz which are assumed to be equal. 

Potential-Time for Reversible Processes.—By 
applying the Nernst equation one deduces the 
electrode potential from 5 and 11. It is useful to 
introduce the transition time (equation 6) in the 
equation for the potential, wrhich takes then the 
form 

with 

and 

E = E\ 

Ev 

RT. _ . RT. T1A - t\ 
—= In a H =• In Tr,--
nF nF t/' 

B + Xr^nMg1 
nF JRDO" 

_ 1 J^il^ ^ f {(kt + kb)VH>< 
1 + K + 2(1 +'K) (kt + kby/H>h 

(12) 

(13) 

(14) 

In equation 13 £° is the standard potential for 
the couple O-R, and the f's are the activity coef­
ficients. If one deletes the term in E, equation 12 
is identical to the equation derived by Karaoglanoff4 

for the case of a reversible process without kinetic 
complication. The influence of the term in E is 
apparent from Fig. 1, which was constructed for the 
following data: Ei/, = 0 volt, K = 103, T = 0.1 
sec. It is seen that the potential-time curve is 

0.05 
TIME (sec). 

Fig. 1.—Potential-time curves for a kinetic process repre­
sented by equation 1. Xumber of each curve is the value 
of ki in sec. - 1 . Solid circle indicates the potential at T / 4 . 

(4) Z. Karaoglanoff, Z. Elektrochem.. 12, 5 (1906). The Nernst 
equation can be applied although a current flows through the cell and 
thermodynamic equilibrium is not achieved. It can be shown that 
kinetic equations reduce to the Nernst equation when the rate con­
stant for electron transfer at the standard potential is sufficiently large. 

shifted toward more anodic potentials as the trans­
formation R to Z becomes more rapid. This is to 
be expected since the concentration of R at the elec­
trode surface decreases when kf increases (K being 
constant). Note also that potential-time curves 
for values of kt comprised between 0 and co are 
somewhat distorted. 

Influence of Current Density.—It is convenient to char­
acterize the position of the potential-time curve by the 
potential ETn at one-fourth of the transition time. This 
potential is equal to the sum of the first two terms on the 
right-hand side in 12. The variations of ET,t with current 
density are determined by the dependence of H on current 
density. Two extreme cases will be first considered accord­
ing to whether the current density is very low or very high. 

When the current density is sufficiently low, the argument 
of the error function for t = T / 4 in (14) is larger than 2. 
The second term on the right-hand of (14) virtually vanishes 
for sufficiently large values of (kt + kb)x/*(r/£)1/', and ETu 
is practically equal (K » 1) to Ei/, + (RT/nF) In K; 
equilibrium for the reaction R <=* Z is then established. 
When the current density is sufficiently large, the argument 
of the error function is smaller than 0.1. The error function 
can then be expanded (for small arguments), and S ap­
proaches the value 1 + 1/(1 + K) as io increases; ET/, 
is simply equal to Ei/, (K ^$> 1). The transition time is then 
so short tha t the transformation R —> Z does not take place 
to any appreciable extent. 

There is an intermediate range of current densities in 
which S is proportional to current densitv. Thus, if one 
has (k, -J- ibl 'Alrr t ) 1 / ! > 2 and K » 1, H is inversely 
proportional to (T/4)V'*; since ( T / 4 ) ' ' / ; is inversely pro­
portional to current density (see equation 6), it follows from 
equations 12 and 14 that £ is a linear function of In j 0 . The 
rate constant kf can be obtained from the slope of this 
line (equation 14, kt ̂ $>kb). 

Only a few kinetic processes represented by equation 1 
have been reported thus far.5 The occurrence of a kinetic 
process was deducted by polarography in these cases. No 
rigorous treatment of polarographic waves corresponding to 
process (1.) has been reported so far, but Kern6 gave an 
approximate treatment and Kivalo7 has announced the 
development of such a treatment.8 I t is quite likely that 
such kinetic processes are not rare in organic chemistry, and 
voltammetry at constant current might be a suitable tool for 
studying them. 

Part II. Catalytic Processes Represented by 
Equation 2 

The Boundary Value Problem.—Because of the 
occurrence of the reaction R + Z = O, kinetic 
terms must be added to Fick's equation. Modified 
equations will be written for the case in which there 
is a large excess of Z; Cz is then equal to Cz0 for any 
value of x and t. The condition under which this 
hypothesis is valid will be derived below. It will also 
be assumed that the backward chemical reaction 
can be neglected. Thus 

bC0(x,t)/dt = D0yC(x,t) /dx2 + kfCy}C&{x,t) (15) 
bCR(x,t)/i>t = DRd'-C(x,t)/dx" - kiCv."Cu{x,t) (16) 

where kt is a formal rate constant. 
The boundary conditions 

Do[dCo(x,t)/dx},.<, + DR[dCH(x,t)/d.vl,_0 = 0 (17) 

£>o[&Co(*,0/dx],_o = W » f (IS) 
express that the sum of the fluxes of O and R at x = 
0 are equal and that the flux of O at the electrode 

(5) (a) L. I. Smith, I. M. Kolthoff, S. Wawzonek and P. M. Ruoff, 
THIS JOURNAL, 63, 1018 (1941); (b) Z. Vavrin, Collection Czech. Chem. 
Communs., 14, 367 (1949); (e) F. Santavy, ibid., 15, 112 (1950); (d) 
R. Brdicka and P. Zuman, ibid.. 15, 766 (1950). 

(6) D. M. H. Kern, THIS JOURNAL, 75, 2473 (1953). 
(7) P. Kivalo, ibid.. 75, 3286 (1953) 
(S) After completion of this manuscript a rigorous treatment for 

linear diffusion by D. AI. H. Kern appeared in ibid., 76, 1011 (1954). 
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surface is constant, respectively. As initial condi­
tion one prescribes Co(x, O) = C0 and CR(X, 0) = 0. 
Furthermore, the functions Co(x, t) and CR(X, t) 
are bounded for x -*•<*>: Co(x, t) -*• C0 and CR(x, 
t) —»• 0 for x —*• oo. 

The function Co(O, /) is derived by using the 
Laplace transformation, and the following result is 
obtained on the assumption that Do and D R are 
equal 

rrnf\- r° ^P tCz 0 Q-A] (19) 

where D represents the common value of Do and Z)R. 
Transition Time.—The transition time rc is 

obtained from (19) by prescribing the condition 
Co(O, rc) = 0. The resulting equation can be 
modified by introducing the transition time TA 
which would be obtained in the absence of any cata­
lytic effect; the time ra is given by equation 6. 
After a simple transformation one derives 

(ls.Y/l = 2y 

\ Td/ 7r'/ierf(7) 
where 

7 = (*f Cz0Tc) V. (2D 

Values of the function on the right-hand side of 
(20) are plotted against y in Fig. 2. Equation 20 
can be applied to the determination of the rate 
constant kt if rc and ra are known. The value of the 
function in the right-hand member in (20) is then 
known, and the argument can be read in a table of 
this function.9 

(20) 

Fig. 2.—Variations of the function 2y/[T1//% erf (7)] with 7. 
Dotted line is asymptote. 

It was assumed in the above derivation that Cz 
(x, t) = Cz0. The condition under which this 

(9) A detailed table is given in the doctoral thesis of C. C. Mattax 
(June, 1954). 

assumption is valid can be established readily by 
considering the fictitious transition time rz which 
should be observed if substance Z were directly 
reduced. The time rz is given by equation 6 in 
which C0 is made equal to Cz0. Concentration 
polarization for Z is negligible if rz > > rc, or in 
view of (6) and (20), when the following condition is 
fulfilled. 

Cz"» O W T 0 O 1 A (22) 

Influence of Current Density.—The function of 7 in 
equation 20 is equal to unity for 7 = 0 as one can ascertain 
by expanding the error function for small arguments. 
Hence, the ratio (T0Ad) 1A approaches unity as kiCz" or TC 
decreases. Since r„ decreases when the current density is 
increased, (TV/TO)1/' approaches unity for sufficiently high 
current densities. Conversely, one has (T0/Td)'A —> 00 
for to —> 0. 

The foregoing considerations are essentially borne out 
experimentally in the catalytic reduction of Ti(IV) in 
presence of hydroxylamine. The kinetics of this reaction 
was studied by Blazek and Koryta10 by polarography. 
Hydroxylamine is reduced in a one-electron rate determining 
step provided that the NH2 radicals formed are removed by 
a substance (oxalic acid) present in large excess.11 Experi­
mental results are summarized in Fig. 3 in which (T„/Td)'A 
is plotted against current density (see also "Experimental") . 
Line 1 represents the average relative value of I0T

1A in the 
absence of hydroxylamine. This line is horizontal as one 
would expect from equation 6 for a process in which there is 
no chemical reaction. Curves 2 and 3 represent the varia­
tions of (Tc/Td)1/2 with current density as calculated for 
k( = 30 1. mole - 1 sec . - 1 . The agreement is fairly good if 
one takes into account that rather poorly defined transition 
times were obtained. The above value of kt for 30° is 
somewhat lower than the datum kt = 42 1. mole - 1 sec . - 1 

reported by Blazek and Koryta.10 We repeated the polaro-
graphic determinations of these authors and confirmed 
their results. The discrepancy between the two results 
probably can be ascribed to the poor definition of potential-
time curves and the resulting error on transition times. 

0 75 15 30 45 60 

Current density (1O - 3 amp. cm. - 2 ) . 
Fig. 3.—Variations of (T»/Td)^ with current density for 

the catalytic reduction of Ti(IV) in presence of hydroxyl­
amine: curve 1, no hydroxylamine (see explanation in text); 
curve 2, 0.49 M hydroxylamine; curve 3, 1.46 M. 

Catalytic processes represented by equation 2 can also be 
studied by polarography and various treatments, among 
which the one of Koutecky12 is the most rigorous, have been 
advanced. The only real advantage of voltammetry at 

Koryta, Collection Czechoslov. Chem. Com-

C. E. Higginson, J. Chem. 

(10) A. Blazek and J. 
muns., 18, 326 (1953). 

(11) P. Davis, M. G. Evans and W. 
Soc, 2563 (1951). 

(12) J. Koutecky, Collection Czechoslov. Chem. Communs., 18, 311 
(1953). 
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constant current over polarography is that catalytic 
processes, which cannot be studied with a mercury electrode, 
can be investigated. 

Part with III. Anodic Oxidation of a Metal 
Formation of a Complex (Equation 3) 

Consider the anodic oxidation of a metal M with 
the formation of a complex M X p " - " 1 - . The 
concentration of ion X " a t the electrode surface is 
given by equation 5 in which n is replaced by njp. 
This result can also be written 

(Cx-) = GMi - {t/Ty 23) 

0. 

(CM XI (24) 

E = Ef ~ 
RT A7MX„"_ 

nF P(Ci-)"-

where r is defined by the condition ( C x A 
Likewise one has the relationship 

cs-
p 

which is written on the assumption tha t the diffu­
sion coefficients of the ion X - and the complex are 
equal. The concentration of ion M at the electrode 
surface can be calculated from 23 and 24 and from 
the unstabili ty constant A.' of the complex. By in­
troducing the resulting value of ( C M ^ ) 1 = O in the 
Nernst equation one obtains 

Jp-U)- RT JtIrJj 
ItF [1"- '1VT)V=I"" 

(25) 

for the potent ial- t ime curve for reversible electrode 
processes. 

It follows from (25) tha t E is equal to the first 
two terms on the right-hand of (25) when the argu­
ment of the second logarithmic term is equal to 
unity. This is the case for example for / = 0.14GT 
when p = 2. A plot of log {( /A) ' 'VU - (V 
r'.)1 ' A j against E should yield a straight line whose 
reciprocal slope is 2.'.}RT/nF. This conclusion 
was verified experimentally in the anodic oxidation 
of silver in potassium cyanide a t 30° (Fig. 4); 
the experimental reciprocal slope of 0.064 is in good 
agreement with the theoretical value of 0.060. 
Likewise the experimental potential —0.5.3 volt 
(vs. S.C. E.), at which the logarithmic term vanishes, 
is in fair agreement with the value —0.46 volt (115. 
S.C.E.) one calculates from (25) on the basis of 
the values E" = 0.800 volt (vs. N.H.E.) and A.' = 

- 0 . 5 5 -0.40 - 0 . 5 0 - 0 . 4 5 
Potential (v. vs. S.C.E.). 

Fig. 4.—Logarithmic plot for the anodic oxidation of silver 
in 5 raM potassium cyanide. 

1.8 X 10 - 1 9 , it being assumed tha t the activity co­
efficients in (25) are equal to unity. 

I t should be emphasized tha t the foregoing treat­
ment is valid provided tha t only one complex is 
formed and that equilibrium j or complex formation is 
achieved. If this is not the case one must take into 
account the kinetics of reaction 3. The resulting 
system of differential equations is non-linear, and 
the problem becomes arduous. 

Part IV. Anodic Oxidation of a Metal with 
Formation of an Insoluble Substance (Equation 4) 

I t is difficult to develop a quanti ta t ive interpre­
tation of the anodic oxidation of metals with forma­
tion of a film of insoluble substance. However, a 
simple interpretation can be developed if one neg­
lects the diffusion process in the film. This simpli­
fied approach is valid when the film is so thin tha t 
it does not offer virtually any barrier to diffusion 
from and to the electrode. Processes leading to the 
formation of an insoluble precipitate M X P can then 
be treated by calculating ( C x A = O on the basis of 
equation 5 in which 11/p is substi tuted for n. Ry 
introducing the value of (Cx-V-0 m the solubil­
ity product 5 , solving for CM+,,, and introducing 
the resulting value in the Nernst equation, one ob­
tains 

,, r o , R T . S pRT. 
E = E" H •- In 77,-0-N- — — -v.- In 

nF (Ct;-)'' nF ['" (2(1) 

At time / = 0 the potential E has the value rep­
resented by the first two terms on the right-hand 
side of (26). Furthermore, a plot of log [1 — 
(t/'r) v's] against E should yield a straight line whose 
slope is — 2.3pRT/nF. This is essentially the case 
in the anodic oxidation of silver in chloride and bro­
mide solutions a t 30° (Fig. 5); the experimental 
reciprocal slopes in Fig. 5 are —0.067 and —0.061 
while the theoretical value is 0.060. The potentials 
E at time t = 0 in Fig. 5 yield 5 A K CI = 9-3 X 10~a 

0.20 0.25 0.30 

0.05 0.10 

POTENTIAL (V. vs.S.C.E.). 
Fig. 5.—Logarithmic plot for the anodic oxidation of 

silver in 5 raM bromide (line 1), and 5 raM chloride (line 2, 
upper scale). 
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and 5AgBr = 3.8 X 1O-12. These values are some­
what larger than the solubility products ^AgCi = 
2.8 X 10-10 and 5AgBr = 5.0 X 10~13 in the litera­
ture.13 This is to be expected since the diameter 
of the particle of AgCl formed in the anodic proc­
ess is possibly a few angstroms. Hence, the solubil­
ity of those particles is higher than the value for 
larger particles.14 Furthermore, the experimental 
errors and the approximate nature of the above 
treatment are reflected in the values of the solubility 
products deduced from potential-time curves. 

It is worth noting that the product i^!l is in­
dependent of current density in the anodic oxida­
tion of silver under the conditions prevailing in our 
experiments (Table I). This result is to be ex­
pected from equation 6 provided that the diffusion 
of silver ion through the film of silver bromide is 
not rate determining. The foregoing considerations 
are then essentially valid. 

TABLE I 

ior1/2 for the anodic oxidation of Ag in 5 raM KBr 
i'o X 10~», amp. cm."5 T, sec. *OTV» 

0.198 166.0 2.50 
.328 53.6 2.40 
.365 41.5 2.35 
.401 35.8 2.40 
.418 32.5 2.38 
.486 20.7 2.22 
.584 17.7 2.46 

av .2 .39 

The determination of transition times for the 
anodic oxidation of metals could possibly be useful 
in chemical analysis. Substances (organic reagents, 
etc.) forming insoluble salts could be determined. 
Frequent calibration of the electrode would be es­
sential since there is never a perfectly uniform at­
tack of the metal, i.e., the area of the electrode 
changes from one series of experiments to another. 

Experimental 
The results on the catalytic reduction of Ti(IV) were ob­

tained with a dropping mercury electrode used as stationary 
electrode. Rather high current densities were utilized, and 
a mercury pool electrode would have required currents up to 
approximately 0.2 amp. Potential-time curves were re­
corded in a small fraction of the drop life, and the area of 
the mercury drop did not change appreciably during re-
cording.16a'b The schematic diagram of the apparatus is 
shown in Fig. 6. When switch 5 is closed, the mercury drop 
is dislodged from the capillary by a magnetic hammer.18 

The time relay (thyratron circuit) is triggered, and after a 
given time, relay RL 2 closes the electrolysis circuit of cell 
CE. This circuit is fed by the power supply with electronic 
regulation P . The area of the mercury drop at the time of 
the recording of the potential-time was computed from the 
rate of flow of the mercury and from the time for which relay 
RL 2 was adjusted; the electrode was assumed to be a 
sphere. 

(13) W. M. Latimer, "The Oxidation States of the Elements and 
their Potentials in Aqueous Solutions," 2nd Ed,, Prentice—Hall Book 
Co., NewYork, N. Y., 1952, p. 191. 

(14) I. M. Kolthofl and E. B. Sandell "Textbook of Quantitative 
Inorganic Analysis," The Macmillan Book Co., New York, N. Y., 
1943, p. 102. 

(15) (a) L. Gierst and A. Juliard, Int. Comm. Electroehem. Therm. 
Kin., Proceedings of the 2nd Meeting, Tamburini, Milan, 1950, pp. 117 
and 229; (b) L. Gierst and A. Juliard, J. Phys. Chem., 87, 701 (1953). 

(16) (a) This method has been utilized by several authors: V. A. 
Taimmergahl, Zavodskaya Lab., IS, 1370 (1949); (b) L. Airey and 
A. A. Smales, Analyst, 78, 287 (1950); (c) E. Wahlin, Radiometer 
Polarographics, 1, 113 (1952). 

Fig. 6.—Schematic diagram of apparatus for electrolysis 
with the dropping mercury electrode. 

A difficulty was encountered in the application of this 
method: the electrolysis current was still flowing through 
the cell when the drop detached itself from the capillary; 
the current density for the newly forming drop was then very 
large and the supporting electrolyte was reduced; this 
resulted in the plugging of the capillary. This difficulty 
was overcome by inserting in AB a time relay which opened 
the electrolysis circuit a given time after the closing of relay 
RL 2, but before the fall of the drop. 

The composition of the solution in the experiments with 
Ti(IV) was: 0.2 oxalic acid, approximately 1 va.M titanic 
sulfate, and varying amounts of hydroxylamine chloride. 
The purity of the latter substance was determined by titra­
tion with potassium permanganate after the addition of 
ferric ion.17 The concentration of titanium was not deter­
mined exactly because it is the ratio (T„/rd) which is of 
importance, and not the absolute value of T0. The same 
amount of titanium salt was of course used in all experiments. 

Potential-time curves for the anodic oxidation of silver 
were determined with a pen-and-ink recorder and the instru­
ment previously discussed.10 The area of the silver elec­
trode (foil) was approximately 1 cm.2. 

Appendix 
BY GLEB MAMANTOV AND PAUL DELAHAY 

Transition Time for Spherical Diffusion.—The dropping 
mercury electrode has been utilized as stationary electrode 
in this and other investigations,ld>16 and it appeared useful to 
derive the value of the transition time for the case of mass 
transfer controlled by spherical diffusion. The solution 
of this problem is as follows. 

The equation for spherical diffusion 

i>c(r,t) _ ra»c(f,o 
dt L br 

2Z>C(r,ty 
r br 

(27) 

must be solved for the conditions C(r,0) = C, (i)C(rJ)/ 
dr) r-m = n/nFD, C(r,t) —» C for r —> » , r being the dis­
tance from the center of the spherical electrode, and ra 
the radius of the electrode. 

Equation 27 can be transformed into the form £>x{r,t) / 
bt = Db*x(r,t)/br2 by setting x(r,t) = rC(r,t). The equa­
tion in x(M) is solved for the above initial and boundary 
conditions—expressed in terms of xir>t)—by applying the 
Laplace transformation.18 The concentration at r = ro is 

C{r,,t) C - nFD Il exp ® - [ T ] ! 
(28) 

The transition time T is defined by the condition C(ro,t) = 
0, or by the equation 

Xro exp (S)-PT] (29) 

where X = u,/nFD. Two particular cases of (29) are of 
interest, namely, when T is very small or very large. In the 
former case (DT/if) <S 1; hence exp(Z>r/Vo) = 1 and erfc 
l(,Dry/t/ro] « 1 - [2/(X)1Aj[CDr)VVrO]. Equation 29 
takes then the same form as formula 6 for linear diffusion. 

(17) W. W. Scott "Standard Methods of Chemical Analysis," D. 
Van Nostrand and Co., New York, N. Y.. 1927, p. 352. 

(18) See details in G. Mamantov's M.S. thesis (June, 1954). 
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Thus, the product J0T
1A for spherical diffusion approaches 

the value J0T
1A for linear diffusion when the current density 

is sufficiently large. The opposite case can be analyzed by 
expanding the error function in (29) for large arguments and 
by retaining the first two terms in the series. Equation 29 is 
transformed into the relationship which shows that the 

J0T
1A 

To 

CnFD 
(30) 

product JoT1A becomes infinite when T approaches zero. 
One concludes from the foregoing discussion of equation 
29 that the product J0T

1 A is not independent of current density 
in the case of symmetrical spherical diffusion. 

The validity of equation 29 was verified experimentally 
and the results are shown in Fig. 7. The calculated curve 
is in fair agreement with the experimental points. The 
departure from theory at low current densities results 
mainly from the growth of the drop during the recording of 
the potential-time curves. At low current densities the 
transition time is of the order of several tenths of a second, 
and the area of the drop at the transition time is larger 
than the average area of the drop during recordings at higher 
current densities. As a result, low current densities are 
smaller than the calculated values of I0, and the product 
ZoT1A is larger than expected. The reduction of a few 
metallic ions also was studied, but the results were some­
what erratic possibly because of interference by convection. 

0 2 4 6 8 10 
Current (X lO"5 amp.). 

Fig. 7.—Variations of J'OT^ with current for the reduction 
of 1 vaM potassium chromate in 1 N sodium hydroxide on 
the dropping mercury electrode. 

Transition for Processes Controlled by Linear Diffusion 
and by Electric Migration in a Uniform Field.—In calculat­
ing transition times one generally assumes that the effect 
of migration of the electrolyzed species (ion) can be neg­
lected. In general this procedure is justified when a large 
excess of supporting electrolyte is present. It is then said 
that the supporting electrolyte "carries" the current and 
that the effect of migration of the reducible or oxidizable 
ion is negligible. This is undoubtedly so at low current 
densities, but at high current densities this may not be the 
case. Consider for example a current density of 1O -2 amp. 
c m . - 2 and assume that the reducible oxidizable ion carries 
only 1% of the current. This fraction of the current may 
correspond to an appreciable transport of substance by 
migration, and consequently the transition time is different 

from the value obtained for mass transfer solely controlled 
by diffusion. The transition time will be derived for the 
case in which the intensity of the electric field is constant. 
This simplified case is of practical interest since a large 
excess of supporting electrolyte is generally present in solu­
tion, and the field intensity is not appreciably affected by 
variations of the concentration of the reducible or oxidizable 
ion. 

Fick's equation for linear diffusion must be modified as 

dC(x,t)/bt = Dd1C(Xj)Zc)X + u<pdC(x,t)/dx (31) 

where u is the ionic mobility of the ion being reduced or 
oxidized and <p is the intensity of the electric field which is 
assumed to be constant for a given current density. 

This equation must be solved for the initial condition 
C(x,0) = C (C bulk concentration) and for the boundary 
condition 

D[dC(x,t)/Z>x]z-o + uvC(Q,t) 
Jp 

nF 
(32) 

One has also C(x,t) —> C f or x —> co , 
The solution of this problem as obtained by the Laplace 

transformation18 is for x = 0 

C(0,t) = C» -
2D + 

/ atl/'-\ 
1,2.D1A/ 

S)] <» 
where a = U(? and \ = in/nF. 

The transition time T is obtained by prescribing the condi­
tion C ( 0 , T ) = 0. When the condition 

a 

(?)V!-p(-

£ * < 0 1 4D 

is fulfilled, one can make the approximations 

erf 

and 

/ 0/1A N 

(-S) = 

1T1AP1A 

4D 

(34) 

(35) 

(36) 

Ey introducing these approximations in (33) and noting 
that <p = pit, where p is the resistivity of the solution, one 
deduces from the condition C(O,r) = 0 the equation 

, . . , , , . 27T1AP1A 8D ,. , , , 
( I 0T 1A)S -J ( I 0 T 1 A ) 2 + -T-, (J0T1A) -

Up U'p' 

A^/mFD3hC = , „ 
« V ( 1 - upnFC) { ° 

The value of J0T
1A and consequently that of T1A can be 

computed by solving (37). I t should be noted that the 
value of I'OT'A obtained in this fashion is independent of 
current density since none of the coefficients in (37) contains 
io. In conclusion the product JoT1A is independent of current 
density even in the case of partial mass transfer by migra­
tion. This conclusion is valid provided that condition 
(34) is fulfilled. 
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